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PrOblem e The World Health Organization lists diabetes among

the top 10 causes of death globally; early detection
Statement through past data analysis is crucial for prevention.

e Utilize big data analytics to enhance early detection
and management of diabetes through a
comprehensive analysis of healthcare data from CDC.

e Develop a data ingestion pipeline for efficient Extract,
Transform, and Load (ETL) of diverse healthcare data,
focusing on patient demographics and lifestyle
factors.
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https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
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Produce visualizations to identify and understand
critical factors influencing diabetes, supporting
informed decision-making by healthcare
professionals.

Create advanced machine learning models to
predict individual diabetes risk, using
sophisticated algorithms to assess various risk
factors and their interactions.
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Objectives
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1.

Develop a Robust Data Ingestion Pipeline

a.

Identify Relevant Diabetes
Correlations
i. Diabetes, BMI, High Blood

Pressure, Cholesterol Checked,
Tobacco Use, Heavy Alcohol
Consumption, etc.

Implement Systematic Data Cleaning

and Preprocessing

Establish MongoDB Storage for

Processed Data

Develop API for Data Retrieval

Visualize Critical Risk Factors
through Web Ul

Implement Machine learning
models using Keras and Tensorflow
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Data Sources and Tools
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1.

Technologies

a.

Q 0 O 0 0T

Data Processing: Spark Core

Library: PySpark, pymongo
Programming Language: Python3
Backend Framework: Flask
Frontend: HTML, JS

Visualization: Matplotlib, Highcharts
Processed Data Storage: MongoDB
Machine Learning: Tensorflow, Keras

Datasets (2015, 2017, 2019, 2021):
https://www.cdc.gov/brfss/annual

data/annual_data.htm (All data is

loaded in s3 bucket, and keys are
added to code. No additional
setup required)

Pipeline
Github:https://qithub.com/ratik-vig/healthc
are_pipeline

Front-End
Github:https://qithub.com/ratik-vig/healthc

are vis
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https://www.cdc.gov/brfss/annual_data/annual_data.htm
https://www.cdc.gov/brfss/annual_data/annual_data.htm
https://github.com/ratik-vig/healthcare_pipeline
https://github.com/ratik-vig/healthcare_pipeline
https://github.com/ratik-vig/healthcare_vis
https://github.com/ratik-vig/healthcare_vis
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Results e Created an batch data ingestion pipeline and

stored clean and processed data to MongoDB

e Use Highcharts to analyze clean data through
Flask endpoint

e Achieved a testing accuracy of 79%
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Pipeline Execution

read_data_from_s3-0

-elean—up-data-0——— train-0

store_data_in_mongo-0

performStoreAnalysis-0
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Visualizations

Diabetes Prevalence by General Health and Age Group
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Visualizations

Diabetes Status Based on Smoking and Heavy Drinking
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Visualizations

Highcharts.com
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Model Training - Model 1
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Model Training - Model 2
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Conclusion
and Lessons
Learned

NYU

Understanding of how to create Data ingestion
and machine learning pipelines
Experimented with various tools such as Airflow,

Luigi and Prefect
Trained ML models from scratch using Tensorflow

and Keras
Tried techniques to address class imbalance and
finally implemented SMOTE
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Questions?

e Deepika Venkatesan (dv2260@nyu.edu)
e Dawood Ghauri (dg4140@nyu.edu)
e Ratik Vig (rnv2292@nyu.edu)
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